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Testing of a Spectral-based Weed Sensor

Ning Wang, Naiqgian Zhang, Dallas Peterson, and Floyd Dowell

Introduction

Site-specific herbicide application is an important component of modern precision
agriculture. Detecting weeds in a crop field is a challenging task. With the advancement
of computer technologies, machine vision has been identified as a possible solution for
weed detection. Image-based weed sensors discriminate weeds from soil and crops using
shape, texture, or color features. El-Faki et al. (1997) developed an image-based weed
detection system using relative color indices formed by RGB gray levels. The system was
less sensitive to canopy overlay, leaf orientation, camera focusing, and wind effect than
systems based on plant shape and texture features. Burks et al. (1999) applied a color co-
occurrence method (CCM) to develop texture statistics as input variables of a
backpropagation (BP) neural-network for weed classification. Thirty-three unique
statistic CCM texture inputs were used to achieve overall classification accuracy of
96.7%. An intelligent sensing and spraying system was developed by Tian et al. (2000).
A real-time machine vision system was integrated with an automatic herbicide sprayer.
The system classified weed based on infested zone (0.254 m by 0.34 m) rather than
individual weeds. The overall accuracy of the sprayer was 100% in bare soil zones, 75%
in weed-infested zones, and 47.8% in crop plant zones based on a weed-sensing
algorithm using discrete wavelet transformation.

Optical weed sensors using spectral characteristics of plants in the visible and near-
infrared (NIR) wavebands are another solution to fast and low-cost weed detection.
Bargen et al. (1992) designed a red — NIR reflectance sensor to detect growing plants.
Four wavelengths (two in the visible region, the other two in the NIR region) were
selected for constructing the reflectance indices. The results provided a strong indication
when a live plant is present within the sensor’s field of view. Hummel and Yu (1998)
reported their research on identifying and locating plant in the field using a spectral
reflectance- based prototype WeedScanner system. They developed two algorithms to
distinguish corn plant from weeds within specific size and density ranges. Biller (1998)
used a commercial optoelectronic system ‘“Detectspray” for weed detection and achieved
30%-70% reduction in herbicide use. Feyaerts et al. (1998) designed a spectral
reflectance sensor using an imaging spectrograph. The resuits showed that, under
controlled conditions, corn and sugar beet could be correctly classified against weeds
with accuracies of 90% and 80%, respectively.

The advantages of optical sensors over machine-vision systems for weed detection
include their low costs, simple system configurations, and high processing speeds. If a
limited number of significant wavelengths can be identified, optical sensors may prove to
be more practical for field implementation.

Wang et al. (1998,1999) studied spectral characteristics of stems and leaves of five crops
and 30 weed species with spectral data collected using a spectrometer. Five significant



wavelengths, at which the contrasts between major categories of object features were
maximized, were selected. Color indices were developed based on reflectance of objects
at these wavelengths. Classification models were established using the partial least-
squares and the discriminant-analysis methods. Based on the classification model, an
optical sensor was designed. Color indices were modified based on experimental data to
be more illumination-insensitive. Laboratory tests showed that the sensor identified
wheat, bare soil, and nine weed species as lumped to “weeds” with classification rates of
98.3%, 98.7%, and 64.3%, respectively. This paper reports results of further laboratory
and field tests of this sensor. The objectives of these tests were:

1. to study the effective sensing area (ESA) of the sensor,
2. to study the capability of the sensor in detecting weeds at different weed densities,
3. to test the sensor under field conditions.

System Configuration

The integrated weed-detection system developed in this study consisted of weed sensors,
a central control unit, a GPS unit, and sprayer units. The system block diagram is given in

Figure 1.

The weed sensor consisted of an optical unif, a signal conditioning unit, an illumination
unit, and a data acquisition unit (Wang et al., 1999). Design of the optical unit was based
on the classification model developed by Wang et al. (1998). The sensor contained five
phototransistors and five inexpensive, thin-film, color filters with passing bands
approximately equal to selected wavelengths. An additional phototransistor without an
optical filter was added to provide the reference light intensity.

Two types of data acquisition systems were used during the laboratory and field tests. A
DAS 1801ST-DA data acquisition system (Keithley Instruments Inc.) installed in a
166MHz Pentium computer and the TestPoint software (Capital Equipment Corp., 1995)
were employed for the ESA and weed-density tests in laboratory. The TestPoint program
performed data collection and processing. It also displayed the signals and stored the data
in files for further processing. For the field test, a CR23x datalogger (Campbell
Scientific, Inc.) was used as the central control unit. It collected analog signals,
performed classification, and sent control signals to the sprayer unit, and displayed the
classification results on LEDs.

The sprayer unit consists of two pulse-width-modulated solenoid valves, a herbicide tank,
an N-serve pump (John Blue Company), a sprayer boom, and two flat-fan nozzles. A
GPS unit will be integrated into the system to measure the speed of tractor for nozzles
control. The GPS unit is also expected to assist in developing weed maps based on the
optical sensor measurement.



Experimental Procedure

The weed-density and ESA tests were conducted in laboratory in 1999. The field test
was conducted in the early summer of 2000.

Weed-density test

Five weed species - field bindweed (Convolvulus arvensis), field pennycress (Thlaspi
arvense), flixweed (Descurainia sophia), kochia (Kochia scoparia), redroot pigweed
(Amaranthus retroflexus)- and wheat were planted separately in small containers in a
greenhouse. These weed species are the major weed in Kansas wheat fields. Tests were
conducted 21 days after the planting date. The diameter of the containers was 12.7 cm,
and an average of 10 seeds were planted in each container. Thus, the plant density within
the container was approximately 7.9 plantsfdm To test the sensor’s response to weed
density, weeds in each container were thinned to three density levels: half density, quarter
density, and single plant, which corresponded to 4.0, 2.0, and 0.8 plant/dm?, respectively.
Tests were conducted at each density level. To create replications, two samples of each
species were prepared at four density levels. Figure 2 shows a sample of redroot pigweed
before and after thinning,.

During the test, the sensor was mounted on a boom, which was installed in front of a test
tractor. In order for the sensor to “see” both stems and leaves, the sensor was mounted at
an inclination angle of 45° from the ground. The distance between the sensor and the
plants was maintained at 40 cm. To avoid reflectance from surrounding objects, a 102 cm
x 81.5 cm area outside the container was covered by soil. The entire test area was
sheltered with black panels to make a “dark room” for the sensor. Samples of wheat and
five weed species at four density levels (full, half, quarter, and single plant) and bare soil
were tested in a random order. Each test was replicated using two samples. At first, the
classifier was trained using samples of weed and wheat at the full density level and bare
soil. Then, all samples were tested using the classifier. Classification rates were
calculated for each individual sample.

ESA test

This experiment was to determine the area within which the sensor can correctly identify weeds.
The testing apparatus included a wooden frame to support the boom, on which the weed
sensor was mounted at an inclination angle of 45°, and a movable wooden platform (198
cm x 122 cm). The wooden platform was equipped with rollers so that it could move under
the boom i in any direction. A container of redroot pigweeds planted at a densuy level of 7
plants/dm’ was situated at the center of the platform, which was set as the origin of a X-Y
coordinate system. The sensor response was measured when the platform moved to 5.08
c¢m x 5.08 cm grid points within an area of 40.6 cm x 40.6 cm. In the area surrounding the
origin of the coordinate system, the sensor responses were measures at half-grid points
(2.54 cm x 2.54 cm). Four halogen-tungsten flood lamps with spherical reflectors were
used to illuminate the platform. The light intensity was adjustable by a rheostat.



A DAS 1801ST-DA data acquisition system was used to collect data from the sensor. At
each grid point, about 350 data points were taken within a 2-minute period under variable
light intensities. The data taken from weed samples at half-grid points (2.54 cm x 2.54
cm) surrounding the origin and bare soil were used to train the classifier. The classifier
was trained using the discriminant analysis (DA) procedure in SAS. The classifier was
then employed to test the weed data taken at each grid point. The grid points at which the
classification accuracy fell below 80% were considered outside of the sensor’s ESA.

Field test

Two expenimental plots at the Ashland Bottom Experiment Field of KSU were prepared
for the field test in the early may of 2000. ‘Jagger' hard red winter wheat was planted in
these plots at a row spacing of 20 cm. The primary weeds in the field were Palmer
amaranth (Admaranthus paimeri) and ivyleaf momingglory (Ipomoea hederecea). The
wheat was at about the 3-leaf stage when the first testing was started and at the 5 leaf
stage and tillering when the testing was concluded. Weed stages ranged from 2 leaf to 6
leaf stages during the testing. There also were some scattered grasses such as giant
foxtail (Setaria faberi) and large crabgrass (Digitaria sanguinalis) in the test area, which
would have ranged from about the 2 leaf stage to tillering stages during the test period.

Two sensors were mounted on the front boom of a testing tractor with an inclination
angle of 45° from the ground, 53.7 cm above ground. The sensor spacing was 45.7 cm. A
digital video camera was mounted directly above the two sensors to take images within
the ESA of the sensors during the test (Figure 3). The clock of the video camera was
adjusted to synchronize the clock of the datalogger so that an image frame acquired from
the video tape could be matched against the ESA of the sensors at each point. Thus, the
video images could be used as a reference to examine the correctness of the classification
results. A Campbell Scientific CR23x datalogger was employed to collect data for
training the classifier and to perform real-time classification to validate the classifier.

Twelve analog input channels of the datalogger were used to acquire test data from two
weed sensors. The sampling rate used was 2 Hz. Training data were taken from two areas
within the field. The first area had weed densities of greater than 0.5 plants/dm?® (Figure
5). In the second plot, weed density was below 0.12 plant/dm? (Figure 6). The data were
taken when the tractor moved forward at a ground speed of 2km/hr. The training data
were then transferred to a laptop computer. Discriminant analysis was performed using
the SAS software (SAS Institute Inc. 1993) to calculated coefficients for the classification
model. These coefficients were then copied to a CR23x program and downloaded to the
datalogger. Areas used for validating the classification model were chosen from the same
general areas used for training. Weed densities within the validation areas were checked
using the images taken by the digital camera.

At the beginning, the classifier was trained to differentiate three classes of objects:
weeds, wheat, and soil. It was then found that the classification accuracy for weeds and
wheat was influenced by the training data used for soil. The number of classes was then
reduced to two: weed and wheat. A much higher classification rates were achieved with



this change. Field-test results reported in this paper are the results derived using the two-
class model.

Results and Discussion

Weed-density test

Results of the weed-density test are summarized in Tables 1 and 2. For the training data
set, which included a total of 5,332 observations, the classifier trained for three classes
(bare soil, weeds, and wheat) successfully classified 100% bare soil (175) and wheat
(897) observations, which included wheat at all four density levels. For weeds at the full,
half, and quarter densities, 58.7% of the observations were identified correctly as weeds
at these density levels, and 12.9% were identified as single weed plants. Combining these
two cases, 71.6% were identified successfully as weeds. The remaining 28.4% were
misidentified as bare soil. Of the 457 observations for single weed plants, only 45.8%
were classified correctly, and the remaining 54.2% were misclassified as bare soil. As the
density of weeds was reduced, soil covered a larger portion of the sensor’s ESA, and it
became increasingly difficult for the sensor to identify the weeds.

ESA test

Figure 4 shows the classification accuracy achieved within the 40.6 cm x 40.6 cm testing
arca using classification model trained with data surrounding the center of the ESA.
Within a circular area with a radius of 15.25 cm, the classification rate in general was
above 80%. For this study, this area was defined as the ESA of the sensor.

From Figure 4, it can be found that the ESA defined throughout the experiment was not
exactly centered at the origin of the X-Y plane, which was the measured center of the
ESA. In the longitudinal direction (Y-axis), the ESA seemed to be slightly shifted
towards the direction where the camera was located. In the lateral direction (X-axis), on
the other hand, there scemed to be a shift of about 7.62 ¢m towards the right side of the
sensor. Due to this shift, the falling edge of the 3-D classification accuracy map was not
centered. This shift may be due to inaccurate geometry of the phototransistor and optical
installation.

The ESA test was conducted at only one level of weed density. For different weed
densities, the ESA defined may be different. The ESA also may be defined differently if
the area used for training was different.

Field test

The field test was conducted during time spans between noon and 6:00pm in a cloudy
day. The light intensity varied within a wide range. The test results showed that, using the
related color indices (Wang et al., 1999), the classifier was quite insensitive to sunlight
change. The classification results on the training and validation data sets were shown in



Table 3 and Table 4, respectively. Sensor 1 identified weeds and wheat with
classification rates over 92% and 98% for the training area and 86% and 99% for the
validation area, respectively. For Sensor 2, the classification rates were 100% and 97%
for the training area and 94% and 97% for the validation area, respectively.

Although sunlight change did not significantly affect classification rates, the shadows of
the sensor and tractor did have considerable effects on the classification accuracy. When
sunlight came from the back of the tractor, shadows of the sensor frame covered a large
area of sensor’s ESA. As results, the classification rates declined considerably. Table §
shows the classification rates derived in the area used for the validation when shadows
covered most part of the ESA of Sensor 2.

Conclusions

1. Laboratory test results showed that the weed sensor had an effective sensing area of
30.5 x 30.5 cm™.

2. When multiple weeds shared the sensor’s effective sensing area with soil, the
classifier identified the weeds with classification rates of 71.6% and 73.8% for the
training and validation data sets, respectively. When only a single weed appeared on
the soil background, less than 50% of the weeds were classified correctly. The
remaining weeds were misclassified as bare soil. In either case, no misclassification
was found between weeds and wheat.

3. Using ﬁeld data for training, the sensor successfully detected weeds at densities of 0.5
plants/dm’ or above with a classification rate of higher than 96.9%.

4. The variation in sunlight during field test did not affect the performance of the
classifier significantly. However, shadows had considerable effect on the
performance.
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Table 1 Classification results for the training data set
at four plant densities

To
Class Bare soil Weeds Wheat Total
Wd _fthq | Wd sg . Wh_fhq | Wh_sg
175 0 0 0 0 175
Bare soil (100) 0 0 0 0 (100)
wd_fhq 9271 . 0 0 3262
Weeds (28.4) 0 0 (100)
From wd_sg 541 0 0 998
(54.2) 0 0 {100)
wh_fhq 0 0 723
Wheat ] 0 {100)
wh_sg 0 =174 174
0 00) (100)
Total 1643 1913 879 723 174 5332
(30.8) (359)  (16.5) {13.6) (3.3) (100)
Notes:
wd_fhq: weeds at full, half, and quarter densities
wd_sg: weeds at single-plant density
wh_fhq: wheat at full, half, and quarter densities
wh_sg: wheat at single-plant density
Numbers in parentheses are percentages
Table 2 Classification results for the validation data set
at four plant densities
To
Class Bare soil Weeds Wheat Total
Wd_fhq | Wd sg { Wh_fhq | Wh sg
CEU207 0 0 0 207
Bare soil (100) 0 0 0 (100)
Wd_fhq 922 303 0 0 3521
Weeds (26.2) (8.6 0 0 (100)
From Wd_sg 605 - 0 0 1028
(58.9) 0 0 (100)
Wh_fhq 169 0 392 0 561
Wheat (30.1) 0 “(69.9) 0 (100)
Wh_sg 169 0 0 0 169
(100) 0 0 0 (100)
Total 2072 726 392 0 5486
(37.8) (13.2) (7.2) 0 (100)
Notes:

wd_fhq: weeds at full, half, and quarter densities
wd_sg: weeds at single-plant density
wh_fhq: wheat at full, half, and quarter densities
wh_sg: wheat at single-plant density

Numbers in parentheses are percentages




Table 3. Classification rates of the sensors
derived on the areas used for training

Sensor 1 Sensor 2
Variety Weed Wheat Weed Wheat
Weed 92.12% 7.88% 100% 0
Wheat 1.85% 98.15% 2.15% 97.85%

Table 4. Classification rates of the sensors
derived on the areas used for validation

Sensor 1 Sensor 2
Variety Weed Wheat Weed Wheat
Weed 86.89% 13.11% 94.66% 5.34%
Wheat 0.98% 99.02% 2.2% 97.8%

ha

Table § Eft_'_ect of shadows on the classification results

Sensor 1 Sensor 2
Variety Weed Wheat Weed | Wheat
Weed 97.24% 2.76% 61.6% 384
Wheat 20.14% 79.59% 46.65% 53.4%
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Figure 1. System block diagram

Figure 2. Redroot pigweed samples at different density level
{a) Tull (7.9 weedidm®) (b} half (4.0 weeds/dm®)
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(d) single-plant (.8 weeds/dm®)
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Figure 3. The testing tractor: the sensors were mounted on the front boom; the

olenvid valves and nozzles were mounted on the rear boom; the data logger was

installed in front of the operator; and the digital video camera faced ground to
provide relerence images.
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Figure 4. Classification accuracy measured when weeds were positioned at different
locations in front of the sensor. The origin of the X-Y plane was the estimated center
of the effective sensing area
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